$$
\begin{aligned}
& \frac{+3 C)+6 B}{10}=\frac{4 M+6 B}{10} \Rightarrow Z \in[M B]
\end{aligned}
$$

Press these keys for numbers, basic operations, and the most common variables

Main Menu

If an object, such as a ball, is dropped from a initial height, c, the height, h, in feet, as a function of time, t, in seconds, can be modeled by $h=-16 t^{2}+c$.

If the object is tossed upwards with an initial velocity, v, then the model becomes $h=-16 t^{2}+v t+c$. These models ignore air resistance.

1. If a ball is dropped from a height of 120 feet, compute the height after 2 seconds.

Tap $\sqrt[\text { Main }]{\alpha}$ for the Main menu.

Press:
(-)

For a more mathematical display, the raised exponent template can be used from the Math1 Keyboard.

Press:
 EXE.

This expression can also be evaluated using a variable for substitution. A command in the form expression | variable = value means evaluate the expression with the given value(s) substituted for the variable(s).

Press

0 Math3 1 Var $t=2$ EXE.
2. Compute the time when the height of the ball is 84 feet.

The value can be computed using the square root and fraction templates from Math1.

Tap
\square
Keyboard \square
\square
1 1 0 (-1 日 6 EXE.

The value can also be computed using a solve command from Math1. The format is (equation, variable) even if there is only one variable in the equation.

Tap

3. A ball is tossed upwards with an initial velocity of 56 feet/second, from an initial height of 120 feet. Compute the time and the height when the ball is at a maximum height.

Commands such as fMax are found under the Interactive and the Action menus. The Interactive commands open a dialogue box which gives prompts for the input. The fMax command uses x as the default variable, but another variable such as t can be used.

Main Menu

$\frac{|Z Q|}{\mid Z Q}=\left(\frac{\bar{a}}{\alpha}+\bar{d}\right):(\bar{q}+\bar{c})=\frac{1}{(\delta+c) a d}$

Main Menu

Tap Interactive, Calculation, fMin/fMax, fMax and complete the inputs as shown. (Part of the first coefficient, -16 , has scrolled off the screen.) Then tap OK.
4. Rewrite the expression from Question 3 in factored form.

Tap Interactive, Transformation, factor, factor.

\% Edit Action	Interactive	
9 approx	Transformation	,
- simplify [expand	Advanced Calculation	
factor	factor	,
combine collect	rFactor factorOut	,
tExpand tCollect	Vector Equation/Inequality	,
expToTrig trigToExp	Assistant Distribution/Inv. Dist	,
Fraction DMS	Financial Define	,

$\frac{|Z Q|}{\left.\left\lvert\, Z\left(\bar{a}+\frac{1}{d}\right)\right.:(\bar{q}+\bar{s})=\frac{1 \delta+c) a d}{(\delta}\right) .}$

Main Menu

7. Compute the total net distance that the ball travels.

The ball had an initial height of 120 and fell to height of 0 , so the net distance should be -120 .

For a calculus connection, integrate the velocity function.

Tap

Keyboard Math2 f몸.

Enter the integrand, the variable, and the limits. The variable t can be found at Math2, then tap EXE.
8. Compute the total distance that the ball travels.

The initial height and the maximum height are known, so the total distance can be easily computed.

For another calculus connection, another integral can be used. The traditional approach is to use two integrals, but it is quicker to use the absolute value template. The template is also in Math2.

The ClassPad has a symbolic algebra system, sometimes called a computer algebra system, or CAS. An important distinction is a calculator using symbolic algebra can manipulate undeclared variables. The factoring example from Question 4 was an illustration. It is usually a good idea to tap Edit, then Clear All Variables to ensure that the variables do not have a value stored in memory. The next 2 questions illustrate additional symbolic algebra.
9. If a model for the height of a ball thrown upwards as a function of time is given by $h=-16 t^{2}+v t+c$, compute an expression for the time when the ball hits the ground.

Tap Interactive, Equation, solve.

Enter the equation in the box by pressing Keyboard and tap abc to view the variables. The negative sign is to the left of 16 and has scrolled off.

Enter the variable in the second box and tap EXE, or press the EXE key; then tap OK.

solve					x
SolveSolve numerically					
Equation: Variable:		$16 t^{\wedge} 2+v \times t+c=0$			
		t			
OK		Cancel			
Math1	a	b	c	d e	f
Math2	g	h	i	$j \quad k$	l
Math3	m	n	o	p q	r
Trig	s	t	u	$v \quad w$	x
Var					
abc	y	z			CAPS
V	4	餫	C	ans	EXE
Alg	Stan	ard	Real	Rad	

